Latent class modeling (LCM), a branch of latent variable modeling, has become increasingly popular among social researchers in recent years because of its superior capability for detecting unobserved heterogeneity in data. Unlike the traditional latent variable models that focus on extracting factors, the latent variable in a LCM is discrete and categorical,and its groups, called latent classes, provide a classification structure or statistical taxonomy for recovering the sub-population behind the sample. This workshop will briefly introduce the methodological concepts of LCM and pay more attention to the analytic techniques, using Mplus, for implementing latent class analysis as well as latent profile analysis along with a major extension for longitudinal data analysis, entitled latent transition analysis (LTA), which is used to examine how individuals transition in the latent class membership over time.
Dr. Hawjeng Chiou is a distinguished professor of the College of Management at National Taiwan Normal University. His major interest is in applied psychometrics, particularly for the applications of advanced modeling techniques, such as Structural Equation Modeling, Multilevel Linear Modeling, and Latent Class Modeling, with substantial areas such as Human Resource Management, Organizational Behavior, and Psychological Testing as well as Creativity research. He has published multiple books on a variety of topics.
- Instructor: Hawjeng Chiou